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We establish that a broad class of effective learning rules—those that im-
prove a scalar performance measure over a given time window—can be
expressed as natural gradient descent with respect to an appropriately
defined metric. Specifically, parameter updates in this class can always
be written as the product of a symmetric positive-definite matrix and the
negative gradient of a loss function encoding the task. Given the high
level of generality, our findings formally support the idea that the gradi-
entis a fundamental object underlying all learning processes. Our results
are valid across a wide range of common settings, including continuous-
time, discrete-time, stochastic, and higher-order learning rules, as well as
loss functions with explicit time dependence. Beyond providing a uni-
fied framework for learning, our results also have practical implications
for control as well as experimental neuroscience.

1 Introduction

Identifying the brain’s learning rules is a major goal in neuroscience, just
as developing effective optimizers is in artificial intelligence research (Lim
et al.,, 2015; Nayebi et al., 2020; Richards & Kording, 2023; Francioni et al.,
2023; Bredenberg & Savin, 2024). Decades of work have produced a diverse
array of learning rules, varying in biological plausibility and efficacy—from
local Hebbian updates to exact gradient-based methods like backpropa-
gation (Hopfield, 1982; Grossberg, 1987; Widrow & Lehr, 1990; Abbott &
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Figure 1: (A) Contour lines of a loss function (darker colors = lower loss). Pa-
rameters update in the direction of g. If this update decreases the loss and the
step size is small, g is equivalent to steepest descent with a non-Euclidean met-
ric, M(0). In this case, the angle ¢ between g and the negative gradient is acute.
Ellipse: e-ball in this non-Euclidean metric. (B) Steepest descent with the Eu-
clidean metric. Circle: e-ball in the Euclidean metric.

Regehr, 2004; Dayan & Abbott, 2005; Fiete & Seung, 2006; Lillicrap et al.,
2016). This letter does not offer any new learning rules. Instead, we show
that under mild assumptions, all effective learning rules-those thatimprove
a scalar measure of performancefit within a simple, unifying framework.
Specifically, they can be expressed as the product of a symmetric, positive-
definite matrix and the negative gradient of a loss function. This corre-
sponds to performing steepest descent with a non-Euclidean metric (see
Figure 1; Amari, 1998).

It is well known that if a learning rule updates parameters by following
the negative gradient of a loss function, the loss does not increase along the
parameter trajectories (Cauchy, 1847; Nocedal & Wright, 1999). However,
many learning rules do not fit this “pure” gradient descent form. Indeed,
there are compelling reasons to believe that the brain’s learning rules can-
notbe expressed as pure gradient descent (Surace et al., 2018; Lillicrap et al.,
2016; Bredenberg & Savin, 2024). Fortunately, there are many ways to de-
crease a loss function beyond traditional gradient descent. One notable class
of algorithms, which we focus on in this letter, is natural gradient descent
(Amari, 1998).

In natural gradient algorithms, parameter updates are written as the
product of a symmetric positive-definite matrix and the negative gradient.
If a learning rule can be expressed in this form, it is considered “effective”
because it guarantees improvement of a scalar performance measure over
time (assuming small step sizes). Given the flexibility of choosing the posi-
tive definite matrix, one can ask the converse question: If a learning rule is
effective, can it be written as natural gradient descent? We show that for a
wide class of effective learning rules, this is indeed the case. For example,
our results hold for all effective continuous-time learning rules.

While infinitely many metrics are consistent with a given effective learn-
ing rule, we prove that all such metrics share a canonical form. We further
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Effective Learning Rules as Natural Gradient Descent 73

identify several metrics that are optimal in terms of allowing us in certain
cases to establish tight bounds on the rate of convergence to minima.

1.1 Formal Setting. We consider a set of D real numbers 6 € R that pa-
rameterize the function of a system. In the case of biology, these numbers
can represent biophysical variables such as synaptic diffusion constants or
receptor densities (Richards & Kording, 2023). In the case of artificial neural
networks, these numbers can represent synaptic weights between units. We
analyze two common methods for updating 6 toward the goal of improv-
ing performance on a task (or set of tasks): continuous-time evolution and
discrete-time updates. In the former, 6 evolves continuously according to a
flow,

i =g(0,1), (1.1)

dt
where g(0,t) is a potentially nonlinear, time-dependent function. At this
stage, we impose no restrictions on this function (e.g., smoothness). In
discrete-time updates, changes to 6 occur at discrete time intervals,

Orp1 =0 + 186, 1), (1.2)

where 1 > 0 is a learning rate parameter. This setting is general enough
to capture supervised learning, self-supervised learning, as well as in-
context learning (where t may be identified with layers in a neural net-
work). Also note that equations 1.1 and 1.2 include techniques that rely on
defining higher-order derivatives of 0, such as accelerated gradient meth-
ods (Muehlebach & Jordan, 2019). In this case, one can arrive back at the
form of equations 1.1 and 1.2 by expanding the state space.!

1.2 Effective Learning Rules Do Not Require Monotonic Improve-
ment. We assume that a parameter vector 6 can be associated with a system
that performs some task. For example, suppose 6 contains the weights of a
neural network after training. This neural network can then be evaluated
based on its performance on some task. We define a learning rule as effec-
tive over time interval m > 0 with respect to a scalar performance measure
if it improves this measure within that interval. We use the loss £ to denote
this measure, where improvement means

L(t+m) < L(b). (1.3)

1I.:or example, for second-order methods, define the extended state space [v 0], where
v: —6.
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Note that this definition does not require monotonic improvement in the
performance measure. In particular, equation 1.3 allows for temporary set-
backs, that is, d£/dt > 0, so long as the setbacks do not outweigh the
progress on average. This includes, for example, learning rules that take
“one step back and two steps forwards.” Note also that although the loss
does not decrease monotonically along trajectories of equation 1.1, the av-
erage loss L,y¢ does, because

_L(E+m) — L(t)

1 t+m .
Lavg = — / L(s) ds - Lavg = <0,
m.Ji

m

where the inequality was obtained by using assumption 1.3. The same ar-
gument can be applied to discrete-time updates. In this case, the average
loss continually improves, because

t+m—1
Lavg(t) = % Y L(t) = Lagt+1) = Lag(t) = Ll +m) = LE)

T=t

0.
m

Therefore, for the remainder of the letter, we assume without loss of gen-
erality that the loss function £ does monotonically decrease. Also note that
while the average loss is a particularly convenient measure of asymptotic
improvement, we can in fact consider much more general measures that
guarantee asymptotic improvement of a performance measure without con-
tinual improvement—for example, by considering a sequence of loss (e.g.,
Lyapunov) functions as done by Ahmadi and Parrilo (2008). Finally, while
we only consider differentiable loss functions in this letter, analogous re-
sults hold for non-differentiable losses using suitable replacements for the
gradient of the loss (Clarke, 1975).

1.3 (Natural) Gradient Descent. Gradient descent is a prototypical al-
gorithm for decreasing a loss function. However, it is by no means the only
algorithm that does so. An important generalization of gradient descent is
natural gradient descent (Amari, 1998),

0=—-M10,t) VoL, (1.4)
where M(0, t) is some symmetric positive-definite matrix.? To see that nat-

ural gradient descent indeed decreases the loss £ in continuous time, sup-
pose that 6 is not at a stationary point, that is, || Vo L] > 0. Then,

2Technically, this is natural gradient flow, called a metric. We will use the term descent
to refer to both continuous and discrete updates.
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=P direction of steepest descent

Figure 2: Natural gradient descent minimizes a loss function (dashed contours)
by evolving the parameters # in the direction of steepest descent in a non-
Euclidean space. This space, a D-dimensional manifold with metric M(6, t), is
visualized as a surface embedded in a higher-dimensional Euclidean space. We
demonstrate that a wide class of learning rules that decreases the loss function
(not necessarily monotonically) fits this framework. In this context, the dynam-
ics of both 6 and M are determined by the learning rule and the loss function.

. ) ~ Vo L(s)|1?
=VoLT 6=V, LTM B, 1)V, _ Ve £)I7 1.
L gﬁ gﬁ M ( s ) 9£ < )\max(M) <0, ( 5)

where Amax(M) > 0 denotes the largest eigenvalue of M. The first equality
follows from the chain rule, the second equality follows from substituting in
equation 1.4, and the inequality is obtained by using the Rayleigh quotient
(Horn & Johnson, 2012). The above conclusion also holds in discrete time,
for sufficiently small learning rate 7.

There are two interesting connections between natural gradient descent
and gradient descent. The first is that in the special case when M = I, natural
gradient descent reduces to gradient descent. The second connection is that
both gradient descent and natural gradient descent perform steepest de-
scent: the negative gradient is the direction of steepest descent in Euclidean
space, whereas the negative natural gradient denotes the direction of steep-
est descent in some non-Euclidean space—particular, in a space where unit
lengths at point 6 satisfy

a"M@O,t)a=1,

which is called a metric. Since the metric may change over time, the geome-
try underlying learning is itself dynamic if the dynamics function g depends
explicitly on time, evolving alongside the parameters (see Figure 2). Natural
gradients underlie many techniques in machine learning and optimization
(Kakade, 2001; Pascanu, 2013; Martens & Grosse, 2015; Martens, 2020; Dan-
gel et al., 2024; Wensing & Slotine, 2020; Ollivier et al., 2017), control theory
(Lee et al., 2018; Boffi & Slotine, 2021; Tzen et al., 2023; Wensing & Slotine,
2020), and, more recently, have enjoyed renewed interest in neuroscience
(Surace et al., 2018; Pogodin et al., 2023; Bredenberg & Savin, 2024; Corn-
ford et al., 2024).
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2 Main Results

2.1 Continuous-Time Learning Rules. To streamline the notation, we
define y as the negative gradient of £ and the update vector g(6, t), defined
in equation 1.1, as g. This allows us to express the monotonic decrease of
the loss function more concisely as y' g > 0. Our goal is to find a symmetric
positive-definite matrix M that maps g to y, which ensures that g can be
written in the natural gradient form,

Mg =y = g= —]\/I_1 VQﬁ.

Toward this goal, consider the matrix

D-1
M= %ny + Z uiu] . (2.1)
v i1
Here, the vectors u; are chosen to span the subspace orthogonal to g, denoted
by ¢+ —{v € R" : v ¢ = 0}. As desired, M maps the update vector g to the
negative gradient direction y. By construction, M is symmetric and positive
definite. Indeed, for any nonzero vector x, we have

D-1
x"Mx = %g(xTy)2 +y (x"w)’ > 0.
i=1

The inequality holds because x cannot be simultaneously orthogonal to both
y and all the u;, as this would contradict the assumption that y "¢ > 0. Later
on, for a special family of metrics, we derive the full spectrum of M.

2.1.1 Canonical Form of the Metric. We now show in the following proof
that any symmetric, positive-definite matrix M such that Mg =y, with
g'y > 0, is of the form given in equation 2.1.

Proof. Let M satisfy the requirements given above. Define

1
M :=M-— —uyy',
y'g
which is a symmetric matrix. We claim that for any nonzero u € gL,

' Mu > 0.

If so, since the matrix is symmetric and an “orthogonal” eigendecomposi-
tion exists, it follows that M’ is of the form "' u;u] for some basis {u;} of
¢+, proving the canonical form. To show this, first note that

1
Mg=Mg— —yy'g=0. (2.2)
8 yTgW g
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Effective Learning Rules as Natural Gradient Descent 77

Now take an arbitrary nonzero u € ¢*. Consider the projection of u to y*
along g,
.

u’:u—ug,

'8
which is nonzero and orthogonal to y.2 Together with equation 2.2 we see
u™Mu= @) Mu = @) M >0,
concluding our proof. O

2.1.2 One-Parameter Family of Metrics. Although the matrix M in equa-
tion 2.1 is positive-definite, it will be useful later to have an explicit expres-
sion for the eigenvalues of M, for example, in terms of the angle between
y and g. While this is challenging for a general M, we observe that a one-
parameter family of valid metrics M can be written as

1+ - T 1 5 ggT
i=1

where > 0 can depend on y and g and 1 u; = §;;. These are exactly the
matrices M, which acts as the scalar « on the orthogonal complement of the
span of g and y. We show in appendix C that the full spectrum of M can be
derived for this family of metrics, as a function of «.

2.1.3 Optimal Metrics. We further show in appendix C that the one-
parameter family (see equation 2.3) contains several globally “optimal”
metrics. In particular, we prove that among all possible metrics, not just
within this one-parameter family, the metric My, which achieves the small-
est condition number, is given by setting o = ?—5 in equation 2.3. The con-
dition number of the metric is a crucial quantity that in general can be used
to estimate the time until convergence to a minimum (see appendix A for
an example involving a strongly convex loss function). The spectrum of
Mopt can be written in terms of the angle between y and g, which we call
¥ € (=%, %), as follows:

1
)\max/min(Mopt) = M |: + [tan (V) |]

lgll L cos ()
_lyl_1
HaMop) = 10 Cos (@) @4

*This projection is well defined by the assumption of effective learning, that y g > 0.
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Figure 3: Eigenvalues of the optimal metric M, as a function of the angle
between vectors y and g, with the norm ratio |y||/||gll fixed at unity. Refer to
equation 2.4 in the main text.

where1 < d < D. See Figure 3 for a plot of these curves. The condition num-
ber « of the optimal metric M has a particularly simple form as a function

of y:

)\max(Mopt) _ 1+ |Sil’1 (W) |
Amin(Mopt) 1= |sin(¥) |

K(Mopt) = (25)

Note that 1/« (Mopt) € (0, 1] and can be naturally viewed as a measure of
similarity between gand y. We also show in appendix C that among all pos-
sible metrics, the one with the minimum possible Aax (M) is asymptotically
approached as o — 0. It can be shown that this minimum is given by

lyl 1
lgll cos (¥)

Amax(M) >

Similarly, the metric with the maximum possible Amin(M) is approached
asymptotically when o — co. This maximum is given by

JminM) < W o6 ().
gl

These results will be particularly useful later, particularly when analyzing
discrete-time learning rules in section 2.2.

920z Atenuer Gz uo pueyolel euowey Aq Jpd i/ L € 008U/E6. 7952/ L/L/BE/IPd-8101LIE/008U/NPS NLIIoa.IP//: Y WOl PapEojuMOd



Effective Learning Rules as Natural Gradient Descent 79

2.1.4 Metric Asymptotics. It is clear from equation 2.1 that the metric M
will “blowup” if the negative gradient y becomes orthogonal to the param-
eter update g. This is expected because in this case, learning does not occur
(dL/dt = 0). Furthermore, in this case, we would have that

y'g=g"Mg=0,

which contradicts the positive-definiteness of M. This can be confirmed by
inspecting the eigenvalues of the metric M given in equation 2.4 and Fig-
ure 3. One sees that as the angle ¢ between y and gapproaches /2 or —77 /2,
the smallest eigenvalue of the metric goes to zero, causing M to lose its pos-
itive definiteness, while the remaining eigenvalues tend to infinity.

2.1.5 Time-Varying Loss. So far, we have only considered loss functions
L(0), which do not depend explicitly on the time . However, there are many
cases of interest where the loss can be thought of as changing in time, for
example, in online convex optimization (Hazan, 2016). In this case, we can
show that effective learning of a time-varying loss £(0, t) implies that the
learning dynamics of an extended parameter vector may be written as nat-
ural gradient descent of this loss. We define this new extended vector as v
and its time derivative as v,

vi=[0t]" =  o=[61].

Then the total derivative of the time-varying loss as 6 evolves in time is
given by,

aLt . 9 aL’
_ oL 6 E——§v<o

L=— ==
R T

Thus, we may conclude that updates to the extended variable v perform
natural gradient descent on the time-varying loss £,

L
b=-M12,
v
where M is constructed as before, with y = —% and g = .

2.2 Discrete-Time Learning Rules. Consider a discrete-time learning
rule that decreases a loss function £ at every step,

01 =0 + 1 864, t) and L(Or+1) — L(0) < 0. (2.6)
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Note that the additive form of the update in equation 2.6 is purely for con-
venience, and is equivalent to a nonadditive form (e.g., multiplicative, as in
Cornford et al., 2024) via a simple redefinition of terms:

Or1 =G0, 1): =0 + 1 g6, 1).

In this section, we show that equation 2.6 implies that the updates g can
always be written in the form of a positive-definite matrix multiplied by
the discrete gradient, which we define below. We will also show that for
smooth loss functions £ and sufficiently small 7, it is possible to construct
at every time t a symmetric positive-definite matrix M (in general, different
from the M considered above) such that

9(0) = —M~' Vo L(6).

To prove this, we recall Taylor’s theorem (Rudin, 1964; Nocedal & Wright,
1999) and the definition of a discrete gradient (Gonzalez, 1996; McLachlan
etal., 1999).

Theorem 1 (Taylor’s Theorem). Suppose that £ : RP — R is a twice continu-
ously differentiable function, and that p € RP. Then there exists some 1 € (0, 1)
such that

Lx+p)=Lx)+p'VL(xX)+ %pT V2L (x + Ap) p. (2.7)

Itis important to note that equation 2.7 is an equality, and not an approx-
imation (although it can certainly be used to generate an excellent approx-
imation of the difference between L(x + p) and £(x) when the norm of p is
small and £ is smooth).

Definition 1 (Discrete Gradient). Suppose that £ : RP — R is a differentiable
function and that p € RP. Then VL : RP x RP — RP is a discrete gradient of L
if it is continuous and

Ry, — _
{ p VL(x, x4+ p) = L(x+ p) — L(x) 28)

VL(x,x) = VL(x).

2.2.1 Discrete-Time Metric. As in the analysis of continuous-time learning
rules above, we define the negative discrete gradient as

:l? = —v[,(gt, 9t+l)~ (29)

Note that equations 2.6 and 2.8 together imply that updates of the parameter
vector 6 will correlate with 7:
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N8y =—[LOu) - LEA)] > 0.
Using this observation, we define the discrete analog of the metric 2.1 as

T

__ D-1
M= S ] 2.10)
vys8 O

where, as before, the vectors u; are chosen to span the subspace orthogonal
to g, denoted by g* := {v € R" : vT ¢ = 0}. We can see from this definition of
M that

Mg=7 and M=M">0.

This implies, via equation 2.6, that the parameter updates can be written in
the form of a positive-definite matrix multiplied by the discrete gradient, as
claimed:

brs1 =6 — M VL (61, 6111). (2.11)
Although equation 2.11 bears a resemblance to the natural gradient descent
rule, they are not identical. This is because the discrete gradient does not al-
ways correspond to the gradient of a specific loss function. In the following
section, we explore the conditions under which equation 2.11 can be con-
sidered a “true” natural gradient descent. In order to do this, we introduce

a new discrete gradient, derived from the Hessian of the loss function.

2.2.2 Small Learning Rate Regime. Motivated by Taylor’s theorem, we
now introduce the following particular discrete gradient,

VL(x,x+ p):=VL(x)+ %Vzﬁ(x +Ap) p, (2.12)

where A € (0, 1) is derived from equation 2.7. It can be easily verified that
the discrete gradient conditions (see equation 2.8) hold. Taking p = 1 g(6;),
we see that for § as in equation 2.9,

7= —VLEO) — 3V2LE + Ang)g = —VLE,) — nHg,
where

1
H:= §V2£(0t + Ang).
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Note that for this particular choice of discrete gradient, we also have that
y—y as n—0.

Since equation 2.11 can be rewritten as 6,41 — 6; = anly, from equa-
tion 2.12, we obtain

(610
M<%> =§=—VLEO) ~H(b1 — ).

Adding the Hessian term to both sides, we have
_ Or41 — 0
[M + nH] <L) = —VL(6,). (2.13)
n

Equation 2.13 is almost in the desired natural gradient form. In order to put
it in exactly natural gradient form, we would like the matrix M + H to be
positive-definite. We will now show that this can be done by choosing
sufficiently small. In the case where the loss function L is convex, M+ His
always positive-definite. We therefore only deal with the case when the loss
L is nonconvex, so that H has a negative minimum eigenvalue. That is, we
assume

dh >0 suchthat Amin(H)= —h.

Using the results of section 2.1 on picking a metric with an easily calculable
minimum eigenvalue, and the fact (Horn & Johnson, 2012) that

)Lmin(M + UH) = )‘min(M) + n)\min(H)v
we can ensure that Ayin (M + nH) > 0 by choosing 1 to be sufficiently small:

17l -
<5 @ cos(v¥), (2.14)

where ¥ is the angle between the negative discrete-gradient j and the up-
date vector g and is always between —m /2 and /2. If  satisfies this in-
equality, then we can invert the M + nH term, yielding

Or11 — O

— =M+ nH] ™' VL), (2.15)

which is precisely a discrete-time natural gradient update rule.
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Effective Learning Rules as Natural Gradient Descent 83

2.2.3 Limit as Learning Rate Goes to Zero (n — 0). Using the fact that
M—-M and nH—-0 as 75— 0,

we obtain that the limit of equation 2.15 as n — 0 recovers the natural gra-
dient descent, equation 1.4,

6 =-M1VL®).

2.2.4 Stochastic Learning Rules. When the discrete learning rule is
stochastic, there is a probability distribution over 61 given a known 6;.
In this case, the average update will be given as

1(8(6:)) = (Br1 — 61) = (Bp11) — 6.

Effective learning on average for a given loss £, up to the generality of in-
tegrating this in time, can be defined as any learning rule that yields

(L(Br11) — L(B)) < 0.

Similar to the deterministic case, we can define

U =
M= + it
7 ; o

where 7 is the negative discrete gradient defined previously and vectors u;
span the subspace orthogonal to (g). This yields

M(g) = =VL(6;) — n(Hg).

In the case where (Hg) " () = 0, M already works as a metric. Otherwise, we
want the matrix

(Hg)(Hg) "

M: —M
T HY Ty

(2.16)

to be positive-definite to allow the average learning rule to be expressed as
natural gradient descent,

(§) = M'VL(#)). (2.17)
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Similar to the deterministic case, this will always hold for small enough #.
This is because the second term in equation 2.16 can be made arbitrarily
small as n — 0.

2.2.5 Larger Learning Rates. When 7 is outside the bounds of equa-
tion 2.14, strict natural gradient-descent dynamics may not hold. For a
counterexample, consider the one-dimensional case with loss L(6) = —6 +

2sin#, and learning rule g(6;) = 6;41 — 6; = 27 with n = 1 and initial condi-
tion 6y = 0. The updates are guaranteed to reduce the loss, as

L(9t+1) — L(Qt) = —27‘[,

and so the learning rule is effective for L. The gradient will be simply the
derivative

0L(0;) = =1+ 2cos2nt) =1> 0,
where the second equality holds since t is discrete. This will give a metric,

g6y
T el

-1 <0,

violating the condition for the metric to be positive-definite. Notice that this

is outside the bounds of equation 2.14, which would give H = —%, h= %,

7= —1,and nmax = % This learning rule is still descending in the direction
of the discrete gradient with equation 2.11.

3 Numerical Experiments

We provide two numerical experiments supporting the theory just devel-
oped. In the first, we show that a stable linear time-invariant (LTI) dynami-
cal system, which in general cannot be written as the gradient of a scalar
function, can be written in the natural gradient form. In the second, we
show that a popular biologically plausible alternative to propagation, feed-
back alignment, can also be written as a natural gradient descent.

3.1 Linear Time-Invariant Dynamics. We consider the stable LTI
system

6 =g(0,t) = A6, (3.1)
where A is an asymmetric matrix with eigenvalues strictly on the left-hand

side of the complex plane. Because A is asymmetric, the dynamics, equa-
tion 3.1, cannot be written as the gradient of a scalar function (because this
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Figure 4: (A) Eigenvalues of M,y for stable linear time-invariant (LTI) dynam-
ics over time. The oscillations arise from the complex eigenvalues of the LTI
matrix. (B) Lyapunov function (loss) corresponding to the dynamics in panel
A, demonstrating a monotonic decrease. (C) Eigenvalues of M, for a small
multilayer network trained with a biologically plausible learning rule (feedback
alignment) to classify MNIST digits. (D) Training loss of feedback alignment as
a function of training steps, showing that while the instantaneous loss is not
strictly monotonic, the average loss decreases over time.

would imply the Hessian, A, is symmetric). Of course, it is well known that
the trajectories of equation 3.1 do decrease the Lyapunov function,

LO)=60TP0  where PA+ATP=-Q,

withQ = QT, P =PT > 0 (Brockett, 2015). In simulations, we set Q = I and
solved for P by using the SciPy (Virtanen et al., 2020) function,

scipy.linalg.solve_continuous_lyapunov. In this case, we have that
y=—VgL =-2P0,

and the metric M can be calculated according to our results, putting the
dynamics, equation 3.1, in the natural gradient form,

6=—-M16)VyL.

Figure 4 shows the results.
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3.2 Biologically Plausible Learning (Feedback Alignment). Feedback
alignment (FA) is a biologically plausible alternative to backpropagation
(BP) (Lillicrap et al., 2016) with strong performance on benchmarks and fa-
vorable scaling for large networks (Nekland, 2016; Launay et al., 2020). FA
uses a random, fixed backward connectivity structure instead of BP’s sym-
metric weights. We use FA to train a simple two-layer linear network to
classify digits from the MNIST data set and, as expected, the network im-
proves performance. Then we computed the eigenvalues of the NGD metric
with equation 2.4. The results are shown in Figure 4. Notably, M does not
provide a straightforward mapping from BP’s individual updates to those
of FA when using stochastic gradient descent, as is our case. This discrep-
ancy arises because each update relies on a different data subset to compute
its loss and gradient, meaning the updates are not solely functions of the
weights, complicating comparisons between steps. For a consistent evalu-
ation of efficient learning, we used the test loss averaged over 300 steps,
Lavg(9) in Figure 4D. The metric maps the weight updates to the negative
gradient of this loss. Details of our code can be found in GitHub.* We note
that the condition number of the metric can be used to provide a principled
measure of the quality of the feedback matrix, in the sense that a large con-
dition number implies slow convergence of feedback alignment, whereas a
small condition number predicts fast convergence (see appendix A).

4 Discussion

We have demonstrated that a broad class of effective learning rules—
those that improve a scalar performance measure—can be unified under
the framework of natural gradient descent. This result offers a conceptual
bridge between diverse learning paradigms, including biologically plausi-
ble mechanisms, by showing that they can be understood as natural gra-
dient algorithms (Nayebi et al., 2020; Bredenberg & Savin, 2024; Richards
& Kording, 2023). Our findings hold in both continuous and discrete time,
providing formal support for the idea that gradient-based updates are fun-
damental to all learning processes.

4.1 Connections to Related Work. Previous work has shown that if a
continuous-time dynamical system admits a strict Lyapunov function, its
evolution can be described by a symmetric positive-definite matrix multi-
plied by the negative gradient of that function (McLachlan et al., 1999; Bérta
et al., 2012). In our case, the loss function serves as the Lyapunov function
governing the learning dynamics.

¢ https://github.com/kozleo/all_learning_natural_gradient/tree/main.
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Our work extends the results of McLachlan et al. (1999) by generalizing
their findings to nonmonotonic and time-varying loss functions, as well as
discrete-time and stochastic settings. We establish that the class of metrics
considered in McLachlan et al. (1999) and Barta et al. (2012) is canonical—
meaning it is the only class of valid metrics. Furthermore, we derive a one-
parameter family of metrics whose spectral properties can be computed ex-
actly. Within this family, we identify an optimal metric, in the sense of min-
imizing the condition number, which proves especially useful in providing
convergence results and control, and analyzing discrete-time learning rules.

4.2 Implications for Deep Learning. Recent work has shown that many
widely used deep learning optimizers—such as Adam, Shampoo, and
Prodigy—correspond to steepest descent under a fixed norm (Bernstein &
Newhouse, 2024). Our results generalize this perspective by showing that
any effective optimizer can be viewed as steepest descent with respect to a
(state-dependent, time-varying) weighted Euclidean norm. This correspon-
dence suggests the intriguing possibility of combining different metrics and
norms, potentially revealing that a broader class of optimizers used “in the
wild” can also be understood as steepest descent. We will explore this di-
rection in future work.

4.3 Future Directions. One natural conjecture emerging from our work
is that any sequence of parameter updates leading to an overall improve-
ment in a loss function—even if not strictly monotonic—can be reformu-
lated as steepest descent under some norm. Many update rules that at first
glance seem disconnected from an optimization process can in fact be refor-
mulated as minimizing a loss function. For example, the Hebbian learning
rule in Hopfield networks can be viewed as minimizing cosine similarity
loss (Tolmachev & Manton, 2020). Another related line of work shows that
any asymptotically stable dynamical system can be mapped, via a suitable
coordinate transformation, to an exponentially stable system (Griine et al.,
1999). In such cases, the metric may naturally arise from the Jacobian of this
transformation—a correspondence that we leave for future investigation.

Additionally, there is a growing body of research on non-Euclidean
synaptic plasticity, particularly in the context of mirror descent, which has
been linked to synaptic weight distributions (Pogodin et al., 2023; Cornford
et al., 2024). Mirror descent generalizes gradient descent by performing
updates in a dual space (Nemirovsky & Yudin, 1983) and can be viewed as
a special case of natural gradient descent. However, not all natural gradient
updates can be expressed in the mirror descent framework (Gunasekar
et al., 2021). In appendix B we provide conditions under which natural
gradient descent may be viewed as mirror descent. Our results there-
fore encompass a broader class of learning rules, which could be further
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constrained in future work to better align with biological and algorithmic
constraints.

In summary, our findings provide a unified theoretical foundation for
understanding learning rules through the lens of natural gradient descent,
with implications spanning neuroscience, control, and machine learning.

Appendix A: Convergence Rate and Metric Conditioning

In this appendix, we give an argument for why choosing the metric with
the smallest possible condition number is optimal. Consider a particularly
simple (yet nonlinear) flow,

6=-M1vVL,

where the loss £ is assumed to be strongly convex and the metric M is as-
sumed for simplicity to be slowly time-varying (effectively constant) along
the system trajectories. This situation corresponds to preconditioned gradi-
ent descent and is a special case of natural gradient descent.

We are interested in analyzing the convergence of this system to the
global equilibrium, obtained when flow stops: # = 0. To do so, we consider
the following Lyapunov function, which may be regarded as a generalized
kinetic energy for the system

1.0 .
V:——6"M6.
2

Since M is positive-definite, convergence of V to zero implies convergence
of the update 6 to zero, which in turn implies convergence of the optimizer
to the global equilibrium. The time derivative of V' is

.06 .
V= eTMafge = —6"H6,

where H denotes the Hessian of the loss L. Since the Hessian is positive-
definite, there exists some 8 > 0 such that

H > M.

Plugging in this inequality, we find that the kinetic energy converges expo-
nentially quickly to zero because

V <28V = V(t) <V (0)e .

Plugging in the definition of V (t), this can be rewritten as
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6(t)"Mé(t) < 6(0)" M6 (0)e~ 2.

Taking the lower bound on the left side and the upper bound on the right
side, it follows from this equation that

JmninM) [6E)] < Amax(M) [60)|* 72"

Finally, we can rewrite this in terms of the condition number of the metric
M,

lo@l = ii [0©@] e = Vie@n) [6)] e

Thus, the “optimal” metric in this setting is the one with the smallest condi-
tion number, as it provides the tightest convergence rate for the optimizer.

Appendix B: Relation to Mirror Descent

Another line of work involving non-Euclidean synaptic plasticity has been
to connect mirror descent (MD) to synaptic weight distributions (Pogodin
etal., 2023; Cornford et al., 2024). MD is a generalization of gradient descent
where an invertible vector link function Vi maps from original weight
space to a dual space, where the gradient steps happen. These updates are
given by

VY (Br41) — VY (0r) = = Vo L(6)).

As Gunasekar et al. (2021) pointed out, an equivalent description of MD is
as a partial discretization of the natural gradient descent dynamics,

6= (V2 (9)'V,L,

with metric M(9) = V2 (9). However, not all metrics have a corresponding
link function V, which requires M to be a Jacobian and satisfy the Poincaré
condition,

) a
—M;j = — M.
20 20;

To summarize, mirror descent is a subset of natural gradient descent: all
MD steps can be written as NGD, but not all NGD can be described by MD.
An important reminder is that the steps in MD do not correspond to the
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steps of discrete natural gradient descent, but of the partial discretization
of the continuous flow.

Appendix C: Optimal Metric

C.1 Eigenvalues of One-Parameter Family. For convenience, we begin
by setting o = y%, for some y > 0.

Lemma 1. The eigenvalues of

yy' yTy( ggT)
M=22 2l (1-2 (C.1)
v'g Ty'g g's
are
llyll ( )
Amax / min M)=———((1+ + 1+ 2 — 4y cos? s
min) = g r S () W2ty cost ()

with multiplicity one each, and

Iyl
gl cos(v)”

with multiplicity D — 2.

Proof. Since

N B O S
= Ty (0 +70-80).

it suffices to compute the eigenvalues of
Ag:=199" — 83"
Ap acts on a vector v = 7 + ¢ g as

Agv = (§ — cos(¥)y§) + ¢ (cos(¥)) — v§)
= (14 ¢cos(¥))j — (cos(¥)y +¢v)§,

which is a multiple of v exactly when
¢(1+¢cos(¥)) = —(cos(y)y +¢y).

This is equivalent to cos(¥)¢% + (1 + y)¢ + y cos (¥) = 0, that is,
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¢ = m<—(1+y)i\/(1+y)2—4yc052(1/f)>-

Thus, the corresponding eigenvalues of Ag are

1
)\max/min(AO) =1+¢cos (lﬁ) = E(l —y=+ \/(1 + V)z —4y cos? (W))

They correspond to the eigenvalues

Iyl

Amax/min (M) = m

<1+y /(1 +7)? - 4y cos? (yf)).

C.2 Optimal Condition Number for One-Parameter Family. The con-
dition number for M as in equation C.1 is

_ T+y+/(A+y)?—4ycos? ()
1+y — /(1 +y)*—4y cos? (V)

1+ + A +7)? — 4y cos? ()’
4y cos? (¥) '

k(M)

SO

. 14+ y+/(1+y)?—4ycos?(v)

o 2./y cos ()

vy 2+ (V2 4y 122 — dcos? (¥)
2cos () ’

Now let cos(y)z = /2 + =172, which is some variable z > 2/ cos(v). We
are trying to minimize

z+ 22 —4
> :

x(M)

k(M) =

This is a monotonically increasing function of z so is minimized at z =
2/ cos(y). This corresponds to y = 1.

C.3 Optimal Condition Number for All Metrics. Let us prove a
lemma:
Lemma 2. Suppose vy, vy are vectors. The following are equivalent:

1. for any B a symmetric matrix, vj Bvg = v] Buvy; and
2. Vg = :l:vl.
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Proof. One direction is obvious. For the nonobvious direction, let B =
(bif)f,)jzl where b,‘j = b]‘l'. Letvyg = (x1, ..., JCD)-r and v = (yl, e, yD)T. Then
we have the equation

D D
D bixixj =) biyiy;.

i j=1 i j=1

Thus, we conclude that x;x; = y;y; for any two indices i and j. When i = j,
this implies x; = +y;, but these signs must all be the same using all the other
equations. O

As a consequence, we can prove the following variant:

Lemma 3. Suppose vy and vy are vectors, and g is a nonzero vector. The following
are equivalent:

1. for any symmetric matrix B such that Bg = 0, the equality v] Bvy = v Bvy
holds; and
2. there exists an a € R such that vg = +v; + ag.

Proof. Again, one direction is obvious. For the nonobvious direction, we
consider the projection of vy and v; to g* along ¢

T Ty
g Ogv vizvl—ng
88

vy = v —

g.

Then we see that (v))"Buvj, = (v]) "Bv] for all symmetric matrices B on g*.
Now using lemma 2, we see that v, = %]. O

Proposition 1. Let M be a positive-definite matrix such that Mg = y wherey ' g >
0. Let r be the angle between g and y. Then the minimum value for k (M), achieved
by equation C.1 wheny =1, is

1+ |sin(y¥) ]|
1—|sin(y)|

Proof. We know that M = ﬁzny + M for some symmetric positive-

definite matrix M’ on g*. Let M’ be a matrix attaining the minimum « (M).
Consider the perturbation of M’ by some symmetric matrix B such that
Bg = 0. Then perturbation theory tells us

)‘«max/min(M + EB) = )‘max/min(M) + vr—yr‘.ax/minBUmax/min6 + 0(62)’

where vmax/ min are eigenvectors of M with eigenvalue Amayx / min Normalized
to have norm 1. Thus
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Amax(M + €B) . Amax(M) + vr-lr—laXBUmaxé
)\min(M + GB) B }”min(M) + UT

min

+ O(e?).

Bvmin€
Since M' is in particular a local minimum,

)\max (M) : U;invain = )\min (M) . UgaxBUmax-
By lemma 3, this implies that vmax, Umin, and g are linearly dependent. Hence
by applying M, we see that so are vmax, Umin, and . So we can restrict ourself
to the two-dimensional subspace spanned by vmax and vmin. But then the
same argument as before shows optimality. g

C.4 Optimal Maximum and Minimum Metric Eigenvalues. We show
that a lower bound (resp., upper bound) for Amin(M) (resp., Amax(M)) for
matrices M satisfying the conditions of proposition 1 and show that they
are never achieved but are asymptotically achieved.

Proposition 2. Let M be a symmetric positive-definite matrix such that Mg =y
wherey"g > 0. Let yr be the angle between g and y. Then hmin(M) < % cos(¥).

Moreover, the supremum is asymptotically approached by equation C.1,as y — oo.
Proof. Recall that
v My

}\min(M) = 1’51;51 vy (CZ)

and, moreover, the minimum is reached by eigenvectors with eigenvalue
Amin- Thus,

T T
Ain(M) < S8 _ 8 ¥ _ WL

g's  g'g gl

0s (¥).

Moreover, equality is not reached since g is not an eigenvector of M. Fi-
nally, the limit of the minimum eigenvalue of equation C.1 as y — oo is, by
lemma 1,

(14 i) -
V3;102||g||cosw) (L+y) \/(1+V) 4y cos* (V) gl cos ().

Proposition 3. Let M be a symmetric positive-definite matrix such that Mg =y
where y'¢ > 0. Let Y be the angle between g and y. Then hmax (M) > ”g”‘ly%.
Moreover, the infimum is asymptotically approached by equation C.1,as y — 0.
Proof. Recall that (e.g., by using equation C.2 and observing that
)\max(M) = )‘min(M_l)_l)/
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T

v'v
A M) = max ————,
max( ) U#O UTMilU

and, moreover, the minimum is reached by the eigenvectors with eigen-
value Anax. Thus,
T T
(M) = Y VY W
y'M7y y'g lglicos (v)

Moreover, equality is not reached since y is not an eigenvector of M. Fi-
nally, the limit of the maximum eigenvalue of equation C.1, as y — 0is, by
lemma 1,

Iyl ( ) o
lim - 2 2(y)) = —
% Zlgl cos(y \ LTV V472~ o) gl cos (%)
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